MERFISH whole brain spatial transcriptomics (part 2a)#
In part 1, we explored two examples looking at the expression of canonical neurotransmitter transporter genes and gene Tac2 in the one coronal section. In this notebook, we will prepare data so that we can repeat the examples for all cells spanning the whole brain. This notebook takes ~10 seconds to run.
The results from this notebook has already been cached and saved. As such, if needed you can skip this notebook and continue with part 2b.
You need to be connected to the internet to run this notebook and have run through the getting started notebook.
import pandas as pd
from pathlib import Path
import numpy as np
import anndata
import time
from abc_atlas_access.abc_atlas_cache.abc_project_cache import AbcProjectCache
We will interact with the data using the AbcProjectCache. This cache object tracks which data has been downloaded and serves the path to the requsted data on disk. For metadata, the cache can also directly serve a up a Pandas Dataframe. See the getting_started
notebook for more details on using the cache including installing it if it has not already been.
Change the download_base variable to where you have downloaded the data in your system.
download_base = Path('../../data/abc_atlas')
abc_cache = AbcProjectCache.from_cache_dir(download_base)
abc_cache.current_manifest
'releases/20241130/manifest.json'
cell = abc_cache.get_metadata_dataframe(
directory='MERFISH-C57BL6J-638850',
file_name='cell_metadata',
dtype={'cell_label': str}
)
cell.set_index('cell_label', inplace=True)
print(len(cell))
3938808
file = abc_cache.get_data_path(
directory='MERFISH-C57BL6J-638850',
file_name='C57BL6J-638850/log2'
)
print(file)
/Users/chris.morrison/src/data/abc_atlas/expression_matrices/MERFISH-C57BL6J-638850/20230830/C57BL6J-638850-log2.h5ad
adata = anndata.read_h5ad(file, backed='r')
gene = adata.var
ntgenes = ['Slc17a7', 'Slc17a6', 'Slc17a8', 'Slc32a1', 'Slc6a5', 'Slc18a3', 'Slc6a3', 'Slc6a4', 'Slc6a2']
exgenes = ['Tac2']
gnames = ntgenes + exgenes
pred = [x in gnames for x in gene.gene_symbol]
gene_filtered = gene[pred]
gene_filtered
gene_symbol | transcript_identifier | |
---|---|---|
gene_identifier | ||
ENSMUSG00000030500 | Slc17a6 | ENSMUST00000032710 |
ENSMUSG00000037771 | Slc32a1 | ENSMUST00000045738 |
ENSMUSG00000025400 | Tac2 | ENSMUST00000026466 |
ENSMUSG00000039728 | Slc6a5 | ENSMUST00000056442 |
ENSMUSG00000070570 | Slc17a7 | ENSMUST00000085374 |
ENSMUSG00000019935 | Slc17a8 | ENSMUST00000020102 |
ENSMUSG00000021609 | Slc6a3 | ENSMUST00000022100 |
ENSMUSG00000020838 | Slc6a4 | ENSMUST00000021195 |
start = time.process_time()
gdata = adata[:, gene_filtered.index].to_df()
print("time taken: ", time.process_time() - start)
time taken: 7.865238999999999
# change columns from index to gene symbol
gdata.columns = gene_filtered.gene_symbol
pred = pd.notna(gdata[gdata.columns[0]])
gdata = gdata[pred].copy(deep=True)
print(len(gdata))
4334174
Close h5ad file and clean up
adata.file.close()
del adata