IPython magic command to render matplotlib plots.

%matplotlib inline

Allen Mouse Common Coordinate Framework (2020 version)#

Allen Mouse Brain Common Coordinate Framework (CCFv3, Wang et al, 2020) is a 3D reference space is an average brain at 10um voxel resolution created from serial two-photon tomography images of 1,675 young adult C57Bl6/J mice. Using multimodal reference data, the entire brain parcellated directly in 3D, labeling every voxel with a brain structure spanning 43 isocortical areas and their layers, 314 subcortical gray matter structures, 81 fiber tracts, and 8 ventricular structures. The 2020 version adds new annotations for layers of the Ammon’s horn (CA), main olfactory bulb (MOB) and minor modification of surrounding fiber tracts.

CCFv3 is used in informatics pipelines and online applications to analyze, visualize and integrate multimodal and multiscale data sets in 3D, and is openly accessible for research use.

The purpose of this notebook is to provide an overview of the data assets and information associated with the Allen CCFv3 through example use cases.

You need to be connected to the internet to run this notebook and have run through the getting started notebook.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import requests
import SimpleITK as sitk
from pathlib import Path

from abc_atlas_access.abc_atlas_cache.abc_project_cache import AbcProjectCache

We will interact with the data using the AbcProjectCache. This cache object tracks which data has been downloaded and serves the path to the requsted data on disk. For metadata, the cache can also directly serve a up a Pandas Dataframe. See the getting_started notebook for more details on using the cache including installing it if it has not already been.

Change the download_base variable to where you have downloaded the data in your system.

download_base = Path('../../data/abc_atlas')
abc_cache = AbcProjectCache.from_cache_dir(download_base)

abc_cache.current_manifest
'releases/20240831/manifest.json'

Data Overview#

Reference template and parcellations#

There are 3 volumetric data files associated with AllenCCFv3. The “average_template_10” volume is the anatomical template of the CCF constructed as the shape and intensity average of 1675 specime brains. The “annotation_10” volume is the parcellation of the brain with respect to a heirachical partonomy of anatomical structures. The “annotation_boundary_10” volume is a mask that identifies all the voxel with on the boundary of a parcellation to support data visualization. The volumes are stored in compressed NIFTI (.nii.gz) format. In this notebook uses the SimpleITK library to open the volume.

abc_cache.list_data_files('Allen-CCF-2020')
['annotation_10', 'annotation_boundary_10', 'average_template_10']
file = abc_cache.get_data_path(directory='Allen-CCF-2020', file_name='average_template_10')
average_template_image = sitk.ReadImage(file)
average_template_array = sitk.GetArrayViewFromImage(average_template_image)

file = abc_cache.get_data_path(directory='Allen-CCF-2020', file_name='annotation_10')
annotation_image = sitk.ReadImage(file)
annotation_array = sitk.GetArrayViewFromImage(annotation_image)

file = abc_cache.get_data_path(directory='Allen-CCF-2020', file_name='annotation_boundary_10')
annotation_boundary_image = sitk.ReadImage(file)
annotation_boundary_array = sitk.GetArrayViewFromImage(annotation_boundary_image)
average_template_10.nii.gz: 100%|█████████████████████████████████████████████████████████████████████████████████████████████| 343M/343M [00:54<00:00, 6.29MMB/s]
annotation_10.nii.gz: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 27.5M/27.5M [00:01<00:00, 18.6MMB/s]
annotation_boundary_10.nii.gz: 100%|████████████████████████████████████████████████████████████████████████████████████████| 27.4M/27.4M [00:01<00:00, 24.1MMB/s]

We define a helper function to print out some basic metadata about a volume

# Function to print out image information
def image_info(img):
    print(f'size: {img.GetSize()} voxels')
    print(f'spacing: {img.GetSpacing()} mm')
    print(f'direction: {img.GetDirection()}')
    print(f'origin: {img.GetOrigin()}')

Each volume is of size 1320 x 800 x 1140 voxels with voxel dimension being 10 x 10 x 10 micrometers. The volume is ASL orientation such that first (x) axis is anterior-to-posterior, the second (y) axis is superior-to-inferior (dorsal-to-ventral) and third (z) axis is left-to-right.

image_info(average_template_image)
size: (1320, 800, 1140) voxels
spacing: (0.009999999776482582, 0.009999999776482582, 0.009999999776482582) mm
direction: (-0.0, 0.0, -1.0, 1.0, -0.0, 0.0, 0.0, -1.0, 0.0)
origin: (5.695000171661377, -5.349999904632568, 5.21999979019165)
spacing = average_template_image.GetSpacing()
voxel_volume = spacing[0] * spacing[1] * spacing[2]
print("voxel volume in mm^3:", "%0.2E" % voxel_volume)
voxel volume in mm^3: 1.00E-06

We define a helper function to visualize the sanme coronal section of the average template, annotation and boundary volumes

def plot_section(slice, cmap = plt.cm.Greys_r, fig_width = 6, fig_height = 6):
    fig, ax = plt.subplots()
    fig.set_size_inches(fig_width, fig_height)
    if cmap is not None:
        plt.imshow(slice, cmap=cmap)
    else :
        plt.imshow(slice)
    plt.axis("off")
    return fig, ax
zindex = 720
zslice = np.transpose(average_template_array[:, :, zindex])
fig, ax = plot_section(zslice)
res = ax.set_title('average_template')
../_images/2c73e0dc515b0d5337062d6eef7980f5b23b45bcdc237d5b639ce7cbae6598bc.png
zslice = np.transpose(annotation_array[:, :, zindex])
fig, ax = plot_section(zslice)
res = ax.set_title('annotation_10')
../_images/0aa9c7b3584bf5f566292a94aa28ef78f18377f8175f383e211944cebe42d1fc.png
zslice = np.transpose(annotation_boundary_array[:, :, zindex])
fig, ax = plot_section(zslice, cmap=plt.cm.Greys)
res = ax.set_title('annotation_boundary_10')
../_images/5f71d1e660ab8e0743b9752571a9fb11ac8bd8fde17f839fafc48e41f606a59a.png

Anatomical structures and parcellation annotation#

Parcellations#

The annotation volume represents tiling of set of parcellations. Each row of the parcellation dataframe has a label (human readable string that is unique in the database), a parcellation index representing the value in the annotation volume and the number of voxel and volume of that parcellation.

parcellation = abc_cache.get_metadata_dataframe(directory='Allen-CCF-2020', file_name='parcellation')
parcellation.set_index('parcellation_index', inplace=True)
print("number of parcellations:", len(parcellation))
parcellation
parcellation.csv: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 41.2k/41.2k [00:00<00:00, 408kMB/s]
number of parcellations: 688

label voxel_count volume_mm3
parcellation_index
987 AllenCCF-Annotation-2020-997 3564320 3.564320
63 AllenCCF-Annotation-2020-68 256520 0.256520
657 AllenCCF-Annotation-2020-667 232608 0.232608
1288 AllenCCF-Annotation-2020-526157192 371584 0.371584
1289 AllenCCF-Annotation-2020-526157196 112222 0.112222
... ... ... ...
135 AllenCCF-Annotation-2020-140 405256 0.405256
140 AllenCCF-Annotation-2020-145 499566 0.499566
148 AllenCCF-Annotation-2020-153 461680 0.461680
159 AllenCCF-Annotation-2020-164 432 0.000432
0 AllenCCF-Annotation-2020-0 697783214 697.783214

688 rows × 3 columns

Parcellation term sets#

For the purpose of ABC atlas visualization and analysis, we have created a simplifed 5 level anatomical heirarchy. Each of these level is represented as a parcellation term set. Each term set consists of a set of ordered terms. Each term set has a label (human readable string that is unique in the database), a name, description and order among the term sets.

parcellation_term_set = abc_cache.get_metadata_dataframe(directory='Allen-CCF-2020', file_name='parcellation_term_set')
parcellation_term_set.set_index('label', inplace=True)
print("number of term sets:", len(parcellation_term_set))
parcellation_term_set
parcellation_term_set.csv: 100%|████████████████████████████████████████████████████████████████████████████████████████████████| 628/628 [00:00<00:00, 5.07kMB/s]
number of term sets: 5

description name parcellation_terminology_label term_set_order parent_term_set_label
label
AllenCCF-Ontology-2017-ORGA organ organ AllenCCF-Ontology-2017 0 NaN
AllenCCF-Ontology-2017-CATE mouse brain anatomical catergories category AllenCCF-Ontology-2017 1 AllenCCF-Ontology-2017-ORGA
AllenCCF-Ontology-2017-DIVI mouse brain divisions division AllenCCF-Ontology-2017 2 AllenCCF-Ontology-2017-CATE
AllenCCF-Ontology-2017-STRU mouse brain structures structure AllenCCF-Ontology-2017 3 AllenCCF-Ontology-2017-DIVI
AllenCCF-Ontology-2017-SUBS mouse brain substructures substructure AllenCCF-Ontology-2017 4 AllenCCF-Ontology-2017-STRU

Parcellation terms and term set membership#

A parcellation term represents an anatomical structure at a single heirarchy level. Each term has a label (human readable string that is unique in the database), a name, acronym, reference atlas color as hex triplet or as RGB values.

parcellation_term = abc_cache.get_metadata_dataframe(directory='Allen-CCF-2020', file_name='parcellation_term')
parcellation_term.set_index('label', inplace=True)
print("number of terms:", len(parcellation_term))
parcellation_term.head(5)
parcellation_term.csv: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 177k/177k [00:00<00:00, 1.09MMB/s]
number of terms: 1631

acronym name color_hex_triplet graph_order identifier red green blue parent_identifier
label
AllenCCF-Ontology-2017-997 brain brain #FFFFFF 0.0 MBA:997 255 255 255 NaN
AllenCCF-Ontology-2017-8 grey Basic cell groups and regions #BFDAE3 1.0 MBA:8 191 218 227 MBA:997
AllenCCF-Ontology-2017-567 CH Cerebrum #B0F0FF 2.0 MBA:567 176 240 255 MBA:8
AllenCCF-Ontology-2017-688 CTX Cerebral cortex #B0FFB8 3.0 MBA:688 176 255 184 MBA:567
AllenCCF-Ontology-2017-695 CTXpl Cortical plate #70FF70 4.0 MBA:695 112 255 112 MBA:688

A parcellation is a member of at most one parcellation term set. This membership is represented as a row in the parcellation term set memership dataframe.

parcellation_term_set_membership = abc_cache.get_metadata_dataframe(directory='Allen-CCF-2020',
                                                                    file_name='parcellation_term_set_membership')
print("number of memberships:", len(parcellation_term_set_membership))
parcellation_term_set_membership.head(5)
parcellation_term_set_membership.csv: 100%|████████████████████████████████████████████████████████████████████████████████████| 114k/114k [00:00<00:00, 822kMB/s]
number of memberships: 1293

parcellation_term_label parcellation_term_set_label parent_term_label term_order
0 AllenCCF-Ontology-2017-997 AllenCCF-Ontology-2017-ORGA NaN 0
1 AllenCCF-Ontology-2017-8 AllenCCF-Ontology-2017-CATE AllenCCF-Ontology-2017-997 1
2 AllenCCF-Ontology-2017-1009 AllenCCF-Ontology-2017-CATE AllenCCF-Ontology-2017-997 2
3 AllenCCF-Ontology-2017-73 AllenCCF-Ontology-2017-CATE AllenCCF-Ontology-2017-997 3
4 AllenCCF-Ontology-2017-315 AllenCCF-Ontology-2017-DIVI AllenCCF-Ontology-2017-8 1

Parcellation to parcellation term membership#

The association between a parcellation and parcellation term is represented as “parcellation to parcellation term membership” within the context of anatomical structure level. It is expected that a parcellation in only associated with one term within a specific term set.

parcellation_annotation = abc_cache.get_metadata_dataframe(directory='Allen-CCF-2020',
                                                           file_name='parcellation_to_parcellation_term_membership')
print("number of memberships:", len(parcellation_annotation))
parcellation_annotation
parcellation_to_parcellation_term_membership.csv: 100%|███████████████████████████████████████████████████████████████████████| 680k/680k [00:00<00:00, 3.75MMB/s]
number of memberships: 3440

parcellation_label parcellation_term_label parcellation_term_set_label parcellation_index voxel_count volume_mm3 color_hex_triplet red green blue parcellation_term_name parcellation_term_acronym parcellation_term_set_name term_set_order term_order parent_term_label
0 AllenCCF-Annotation-2020-997 AllenCCF-Ontology-2017-997 AllenCCF-Ontology-2017-ORGA 987 3564320 3.564320 #FFFFFF 255 255 255 brain brain organ 0 0 NaN
1 AllenCCF-Annotation-2020-68 AllenCCF-Ontology-2017-997 AllenCCF-Ontology-2017-ORGA 63 256520 0.256520 #FFFFFF 255 255 255 brain brain organ 0 0 NaN
2 AllenCCF-Annotation-2020-68 AllenCCF-Ontology-2017-8 AllenCCF-Ontology-2017-CATE 63 256520 0.256520 #BFDAE3 191 218 227 Basic cell groups and regions grey category 1 1 AllenCCF-Ontology-2017-997
3 AllenCCF-Annotation-2020-68 AllenCCF-Ontology-2017-315 AllenCCF-Ontology-2017-DIVI 63 256520 0.256520 #70FF71 112 255 113 Isocortex Isocortex division 2 1 AllenCCF-Ontology-2017-8
4 AllenCCF-Annotation-2020-68 AllenCCF-Ontology-2017-184 AllenCCF-Ontology-2017-STRU 63 256520 0.256520 #268F45 38 143 69 Frontal pole, cerebral cortex FRP structure 3 1 AllenCCF-Ontology-2017-315
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3435 AllenCCF-Annotation-2020-145 ABC-Ontology-2023-V4-structure AllenCCF-Ontology-2017-STRU 140 499566 0.499566 #AAAAAA 170 170 170 fourth ventricle, unassigned V4-unassigned structure 3 367 AllenCCF-Ontology-2017-145
3436 AllenCCF-Annotation-2020-145 ABC-Ontology-2023-V4-substructure AllenCCF-Ontology-2017-SUBS 140 499566 0.499566 #AAAAAA 170 170 170 fourth ventricle, unassigned V4-unassigned substructure 4 885 ABC-Ontology-2023-V4-structure
3437 AllenCCF-Annotation-2020-153 ABC-Ontology-2023-V4r-substructure AllenCCF-Ontology-2017-SUBS 148 461680 0.461680 #AAAAAA 170 170 170 lateral recess V4r substructure 4 886 AllenCCF-Ontology-2017-153
3438 AllenCCF-Annotation-2020-164 ABC-Ontology-2023-c-structure AllenCCF-Ontology-2017-STRU 159 432 0.000432 #AAAAAA 170 170 170 central canal, spinal cord/medulla c structure 3 369 AllenCCF-Ontology-2017-164
3439 AllenCCF-Annotation-2020-164 ABC-Ontology-2023-c-substructure AllenCCF-Ontology-2017-SUBS 159 432 0.000432 #AAAAAA 170 170 170 central canal, spinal cord/medulla c substructure 4 887 ABC-Ontology-2023-c-structure

3440 rows × 16 columns

Example use cases#

Aggregate parcellations and voxels per term#

We can obtain parcellation and voxel count per parcellation annotation term using the pandas groupby function

# Count the number of parcellation associated with each parcellation term
term_parcellation_count = parcellation_annotation.groupby(['parcellation_term_label'])[['parcellation_index']].count()
term_parcellation_count.columns = ['number_of_parcellations']
term_parcellation_count.sort_values('number_of_parcellations', inplace=True, ascending=False)
term_parcellation_count
number_of_parcellations
parcellation_term_label
AllenCCF-Ontology-2017-997 687
AllenCCF-Ontology-2017-8 597
AllenCCF-Ontology-2017-315 241
AllenCCF-Ontology-2017-1009 81
AllenCCF-Ontology-2017-313 59
... ...
AllenCCF-Ontology-2017-10703 1
AllenCCF-Ontology-2017-10704 1
AllenCCF-Ontology-2017-1072 1
AllenCCF-Ontology-2017-1074 1
AllenCCF-Ontology-2017-998 1

1072 rows × 1 columns

# Count the number of voxels associated with each parcellation term
term_voxel_count = parcellation_annotation.groupby(['parcellation_term_label'])[['voxel_count','volume_mm3']].sum()
term_voxel_count.sort_values('voxel_count', inplace=True, ascending=False)
term_voxel_count
voxel_count volume_mm3
parcellation_term_label
ABC-Ontology-2023-unassigned-substructure 697783214 697.783214
ABC-Ontology-2023-unassigned-structure 697783214 697.783214
ABC-Ontology-2023-unassigned-organ 697783214 697.783214
ABC-Ontology-2023-unassigned-division 697783214 697.783214
ABC-Ontology-2023-unassigned-category 697783214 697.783214
... ... ...
ABC-Ontology-2023-c-structure 432 0.000432
ABC-Ontology-2023-CA1-substructure 6 0.000006
AllenCCF-Ontology-2017-1051 4 0.000004
ABC-Ontology-2023-CA3-substructure 2 0.000002
AllenCCF-Ontology-2017-545 2 0.000002

1072 rows × 2 columns

# Join counts with the term dataframe
term_with_counts = parcellation_term.join(term_parcellation_count['number_of_parcellations'], how='inner')
term_with_counts.index.name = 'label'
term_with_counts = term_with_counts.join(term_voxel_count[['voxel_count','volume_mm3']])
term_with_counts[['name', 'number_of_parcellations', 'voxel_count', 'volume_mm3']]
term_with_counts.head(5)
acronym name color_hex_triplet graph_order identifier red green blue parent_identifier number_of_parcellations voxel_count volume_mm3
label
AllenCCF-Ontology-2017-997 brain brain #FFFFFF 0.0 MBA:997 255 255 255 NaN 687 506056786 506.056786
AllenCCF-Ontology-2017-8 grey Basic cell groups and regions #BFDAE3 1.0 MBA:8 191 218 227 MBA:997 597 449681182 449.681182
AllenCCF-Ontology-2017-315 Isocortex Isocortex #70FF71 5.0 MBA:315 112 255 113 MBA:695 241 123282624 123.282624
AllenCCF-Ontology-2017-184 FRP Frontal pole, cerebral cortex #268F45 6.0 MBA:184 38 143 69 MBA:315 5 973876 0.973876
AllenCCF-Ontology-2017-68 FRP1 Frontal pole, layer 1 #268F45 7.0 MBA:68 38 143 69 MBA:184 1 256520 0.256520
# validate that term with the same acronym have the same number of voxels
alist = np.unique(term_with_counts['acronym'])
for aa in alist :
    filtered = term_with_counts[term_with_counts['acronym'] == aa]
    vlist = np.unique(filtered['voxel_count'])
    if len(vlist) > 1:
        print(aa, vlist)

The dataframe term_with_counts is available in the cache as parcellation_term_with_counts.

Visualizing parcellation annotation at each hierachy level#

We can explore the relationship and distribution of parcellations between term sets by creating a pivot table using pandas groupby fuunction. Each row of the resulting dataframe represents a parcellation, each column represents a term set and the value in the table is the name of the term that has been associated with the cluster for that specific term set.

pivot = parcellation_annotation.groupby(['parcellation_index','parcellation_term_set_name'])['parcellation_term_acronym'].first().unstack()
pivot = pivot[parcellation_term_set['name']] # order columns
pivot
parcellation_term_set_name organ category division structure substructure
parcellation_index
0 unassigned unassigned unassigned unassigned unassigned
1 brain grey HY TMv TMv
2 brain grey Isocortex SSp-m SSp-m6b
5 brain fiber tracts lfbs cst int
6 brain grey P PSV PSV
... ... ... ... ... ...
1323 brain grey MB IPN IPI
1324 brain grey MB IPN IPDM
1325 brain grey MB IPN IPDL
1326 brain grey MB IPN IPRL
1327 brain grey MB PAG Su3

688 rows × 5 columns

name = parcellation_annotation.groupby(['parcellation_index', 'parcellation_term_set_name'])['parcellation_term_name'].first().unstack()
name = name[parcellation_term_set['name']] # order columns
name
parcellation_term_set_name organ category division structure substructure
parcellation_index
0 unassigned unassigned unassigned unassigned unassigned
1 brain Basic cell groups and regions Hypothalamus Tuberomammillary nucleus, ventral part Tuberomammillary nucleus, ventral part
2 brain Basic cell groups and regions Isocortex Primary somatosensory area, mouth Primary somatosensory area, mouth, layer 6b
5 brain fiber tracts lateral forebrain bundle system corticospinal tract internal capsule
6 brain Basic cell groups and regions Pons Principal sensory nucleus of the trigeminal Principal sensory nucleus of the trigeminal
... ... ... ... ... ...
1323 brain Basic cell groups and regions Midbrain Interpeduncular nucleus Interpeduncular nucleus, intermediate
1324 brain Basic cell groups and regions Midbrain Interpeduncular nucleus Interpeduncular nucleus, dorsomedial
1325 brain Basic cell groups and regions Midbrain Interpeduncular nucleus Interpeduncular nucleus, dorsolateral
1326 brain Basic cell groups and regions Midbrain Interpeduncular nucleus Interpeduncular nucleus, rostrolateral
1327 brain Basic cell groups and regions Midbrain Periaqueductal gray Supraoculomotor periaqueductal gray

688 rows × 5 columns

We can also obtain parcellation term color pivot tables in the same way

color = parcellation_annotation.groupby(['parcellation_index', 'parcellation_term_set_name'])['color_hex_triplet'].first().unstack()
color = color[parcellation_term_set['name']] # order columns
color.columns = ['%s_color' % x for x in color.columns]
color
organ_color category_color division_color structure_color substructure_color
parcellation_index
0 #000000 #000000 #000000 #000000 #000000
1 #FFFFFF #BFDAE3 #E64438 #FF4C3E #FF4C3E
2 #FFFFFF #BFDAE3 #70FF71 #188064 #188064
5 #FFFFFF #CCCCCC #CCCCCC #CCCCCC #CCCCCC
6 #FFFFFF #BFDAE3 #FF9B88 #FFAE6F #FFAE6F
... ... ... ... ... ...
1323 #FFFFFF #BFDAE3 #FF64FF #FFA6FF #FFA6FF
1324 #FFFFFF #BFDAE3 #FF64FF #FFA6FF #FFA6FF
1325 #FFFFFF #BFDAE3 #FF64FF #FFA6FF #FFA6FF
1326 #FFFFFF #BFDAE3 #FF64FF #FFA6FF #FFA6FF
1327 #FFFFFF #BFDAE3 #FF64FF #FF90FF #FF90FF

688 rows × 5 columns

channels = {}
for c in ['red', 'blue', 'green'] :
    df = parcellation_annotation.groupby(['parcellation_index', 'parcellation_term_set_name'])[c].first().unstack()
    df = df[parcellation_term_set['name']] # order columns
    df.columns = ['%s' % (x) for x in color.columns]
    channels[c] = df
channels['red']
organ_color category_color division_color structure_color substructure_color
parcellation_index
0 0 0 0 0 0
1 255 191 230 255 255
2 255 191 112 24 24
5 255 204 204 204 204
6 255 191 255 255 255
... ... ... ... ... ...
1323 255 191 255 255 255
1324 255 191 255 255 255
1325 255 191 255 255 255
1326 255 191 255 255 255
1327 255 191 255 255 255

688 rows × 5 columns

The dataframes created here (pivot, name, color, channels) are stored in the cache as parcellation_to_parcellation_term_membership_acronym, parcellation_to_parcellation_term_membership_name, parcellation_to_parcellation_term_membership_color, and parcellation_to_parcellation_term_membership_<channel>.

We define a helper function to colorized parcellation by its reference atlas color for each anatomical level

def colorize(zslice, term_set):

    # create a 3d array to store rgb image
    sshape = zslice.shape
    colorized = np.zeros((sshape[0], sshape[1], 3), dtype=np.uint8)

    for i,c in enumerate(['red', 'green', 'blue']):
        temp = np.zeros((sshape[0], sshape[1]), dtype=np.uint8)
        temp.flat[:] = channels[c].loc[zslice.flat[:], '%s_color' % term_set]
        colorized[:, :, i] = temp

    return colorized
zindex = 720
zslice = np.transpose(annotation_array[:, :, zindex])
fig, ax = plot_section(zslice)
res = ax.set_title('annotation_10')
../_images/0aa9c7b3584bf5f566292a94aa28ef78f18377f8175f383e211944cebe42d1fc.png
term_set = 'organ'
colorized = colorize(zslice, term_set)
fig, ax = plot_section(colorized)
res = ax.set_title(term_set)
../_images/cb4251e8d6045486dbcfd8a8fd558a89fd5fd5498863ccfa80e9fe95a9515c61.png
term_set = 'category'
colorized = colorize(zslice, term_set)
fig, ax = plot_section(colorized)
res = ax.set_title(term_set)
../_images/000cc32649250820d7b0074d5504ed2598d24d2d1abb37287bfdf996e6f5caf8.png
term_set = 'division'
colorized = colorize(zslice, term_set)
fig, ax = plot_section(colorized)
res = ax.set_title(term_set)
../_images/c916533aae8d1943186e3b19cbc7d70b661eebc70b3391caec2d216936cafdf0.png
term_set = 'structure'
colorized = colorize(zslice, term_set)
fig, ax = plot_section(colorized)
res = ax.set_title(term_set)
../_images/17ba3705e15794c6716a789cff54372d9f2d561a89069c810b6fa5503cfa3015.png
term_set = 'substructure'
colorized = colorize(zslice, term_set)
fig, ax = plot_section(colorized)
res = ax.set_title(term_set)
../_images/a36eaf1e726afc8d5ae9511288e94f5c46af4b9cbd51f2fab3edd5ff5b6d028d.png