10x RNA-seq clustering analysis and annotation (CCN20230722)#

The Mouse Whole Brain Atlas is a high-resolution transcriptomic and spatial cell-type atlas across the entire mouse brain, integrating several whole-brain single-cell RNA-sequencing (scRNA-seq) datasets. The datasets contain a total of ~4 million cells passing rigorous quality-control (QC) criteria. The integrated transcriptomic taxonomy contains 5,322 clusters that are organized in a hierarchical manner with nested groupings of 34 classes, 338 subclasses, 1,201 supertypes and 5,322 types/clusters. The scRNA-seq data reveal transcriptome-wide gene expression and co-expression patterns for each cell type. The anatomical location of each cell type has been annotated using a comprehensive brain-wide MERFISH dataset with a total of ~4 million segmented and QC-passed cells, probed with a 500-gene panel and registered to the Allen Mouse Brain Common Coordinate Framework (CCF v3). The MERFISH data not only provide accurate spatial annotation of cell types at subclass, supertype and cluster levels, but also reveal fine-resolution spatial distinctions or gradients for cell types. The combination of scRNA-seq and MERFISH data reveals a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type, as well as unique features of cell type organization in different brain regions.

The purpose of this notebook is to provide an overview of how cluster and cluster annotation information is represented through example use cases.

You need to be connected to the internet to run this notebook and have run through the getting started notebook.

A detailed cell type annotation table is also provided along with data downloads detailing information about the hierarchical membership, anatomical annotation, neurotransmitter type, cell type marker genes, transcription factor and neuropeptide markers, and other metadata types for each cluster.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path

from abc_atlas_access.abc_atlas_cache.abc_project_cache import AbcProjectCache

We will interact with the data using the AbcProjectCache. This cache object tracks which data has been downloaded and serves the path to the requsted data on disk. For metadata, the cache can also directly serve a up a Pandas Dataframe. See the getting_started notebook for more details on using the cache including installing it if it has not already been.

Change the download_base variable to where you have downloaded the data in your system.

download_base = Path('../../data/abc_atlas')
abc_cache = AbcProjectCache.from_cache_dir(download_base)

abc_cache.current_manifest
'releases/20241115/manifest.json'

Data Overview#

Clusters#

Each of the final set of 5196 cluster is associated with an alias and label. Each row of the dataframe represnts a cluster. Each cluster has a label (human readable string that is unique in the database), cluster alias (in this case a simple integer) and the number of cells that has been grouped into the cluster.

cluster = abc_cache.get_metadata_dataframe(directory='WMB-taxonomy', file_name='cluster')
print(len(cluster))
cluster.head(5)
5322
cluster_alias number_of_cells label
0 1 727 CS20230722_0001
1 10 740 CS20230722_0010
2 100 1053 CS20230722_0100
3 1000 59 CS20230722_1000
4 1001 96 CS20230722_1001

Cluster annotation term sets#

Each level of classification is represented as a cluster annotation term set. Each term set consists of a set of ordered terms. Each term set has a label (human readable string that is unique in the database), a name, description and order among the term sets. Note that these are terms specific to the WMB dataset. The WHB dataset contains supercluster, cluster, subcluster, and neurotransmitter. See the WHB cluster annotation tutorial for more information.

term_set = abc_cache.get_metadata_dataframe(directory='WMB-taxonomy', file_name='cluster_annotation_term_set')
term_set
label name description order
0 CCN20230722_NEUR neurotransmitter Clusters are assigned based on the average exp... 0
1 CCN20230722_CLAS class The top level of cell type definition in the m... 1
2 CCN20230722_SUBC subclass The coarse level of cell type definition in th... 2
3 CCN20230722_SUPT supertype The second finest level of cell type definitio... 3
4 CCN20230722_CLUS cluster The finest level of cell type definition in th... 4

We can use the pandas iterrows function to print out the description for each term set.

# print out description for each term_set
for tsindex, tsrow in term_set.iterrows() :
    print("%s:\n" % tsrow['name'])
    print("%s\n" % tsrow['description'])
neurotransmitter:

Clusters are assigned based on the average expression of both neurotransmitter transporter genes and key neurotransmitter synthesizing enzyme genes.

class:

The top level of cell type definition in the mouse whole brain taxonomy. It is primarily determined by broad brain region and neurotransmitter type. All cells within a subclass belong to the same class. Class provides a broader categorization of cell types.

subclass:

The coarse level of cell type definition in the mouse whole brain taxonomy. All cells within a supertype belong to the same subclass. Subclass groups together related supertypes.

supertype:

The second finest level of cell type definition in the mouse whole brain taxonomy. All cells within a cluster belong to the same supertype. Supertype groups together similar clusters.

cluster:

The finest level of cell type definition in the mouse whole brain taxonomy. Cells within a cluster share similar characteristics and belong to the same supertype.

Cluster annotation terms#

A cluster annotation term represents a group within a single level of classification. Each term object has a label (human readable string that is unique in the database), a name, which cluster annotation term set it belongs to and a parent or superclass if the term forms a heirarchy, an order within a term set and a color for visualization purposes.

term = abc_cache.get_metadata_dataframe(directory='WMB-taxonomy', file_name='cluster_annotation_term', keep_default_na=False)
term.head(5)
label name cluster_annotation_term_set_label parent_term_label parent_term_set_label term_set_order term_order cluster_annotation_term_set_name color_hex_triplet
0 CS20230722_NEUR_Glut Glut CCN20230722_NEUR 0 0 neurotransmitter #2B93DF
1 CS20230722_NEUR_NA NA CCN20230722_NEUR 0 1 neurotransmitter #666666
2 CS20230722_NEUR_GABA GABA CCN20230722_NEUR 0 2 neurotransmitter #FF3358
3 CS20230722_NEUR_Dopa Dopa CCN20230722_NEUR 0 3 neurotransmitter #fcf04b
4 CS20230722_NEUR_Glut-GABA Glut-GABA CCN20230722_NEUR 0 4 neurotransmitter #0a9964

We can use the groupby and count functions in pandas to tally the number of terms in each term set (classification level).

term[['label','cluster_annotation_term_set_name']].groupby('cluster_annotation_term_set_name').count()
label
cluster_annotation_term_set_name
class 34
cluster 5322
neurotransmitter 10
subclass 338
supertype 1201

It is important to note that term names are only unique within a term set and not unique across term sets. In particular, the name “0001 CLA-EPd-CTX Car3 Glut_1” is used both as supertype and cluster term. These are distinct entities as supertype “0001 CLA-EPd-CTX Car3 Glut_1” has three other distinct cluster members. As such when doing aggregation operations, it is important to the use the term label instead of name. For the name “0001 CLA-EPd-CTX Car3 Glut_1”, the associated label terms are ” CS20230722_SUPT_0001” and “CS20230722_CLUS_000” in the supertype and class level respectively.

# Use the groupby function to find the usage count for each term name
term_name_count = term.groupby(['name'])[['cluster_annotation_term_set_name']].count()
term_name_count.columns = ['usage_count']
pred = term_name_count['usage_count'] > 1
term_name_count = term_name_count[pred]
term_name_count
usage_count
name
0001 CLA-EPd-CTX Car3 Glut_1 2
# Filter the dataframe to terms where there was a name reuse
pred = [x in term_name_count.index for x in term['name']]
name_clash_term = term[pred][['label','name','cluster_annotation_term_set_name']]
name_clash_term
label name cluster_annotation_term_set_name
382 CS20230722_SUPT_0001 0001 CLA-EPd-CTX Car3 Glut_1 supertype
1583 CS20230722_CLUS_0001 0001 CLA-EPd-CTX Car3 Glut_1 cluster
# List all clusters which have supertype "0001 CLA-EPd-CTX Car3 Glut_1" as parent
pred = (term['parent_term_label'] == 'CS20230722_SUPT_0001')
term[pred]
label name cluster_annotation_term_set_label parent_term_label parent_term_set_label term_set_order term_order cluster_annotation_term_set_name color_hex_triplet
1583 CS20230722_CLUS_0001 0001 CLA-EPd-CTX Car3 Glut_1 CCN20230722_CLUS CS20230722_SUPT_0001 CCN20230722_SUPT 4 0 cluster #00664E
1584 CS20230722_CLUS_0002 0002 CLA-EPd-CTX Car3 Glut_1 CCN20230722_CLUS CS20230722_SUPT_0001 CCN20230722_SUPT 4 1 cluster #5C79CC
1585 CS20230722_CLUS_0003 0003 CLA-EPd-CTX Car3 Glut_1 CCN20230722_CLUS CS20230722_SUPT_0001 CCN20230722_SUPT 4 2 cluster #86FF4D
1586 CS20230722_CLUS_0004 0004 CLA-EPd-CTX Car3 Glut_1 CCN20230722_CLUS CS20230722_SUPT_0001 CCN20230722_SUPT 4 3 cluster #CC563D

Cluster to cluster annotation membership#

The association between a cluster and cluster annotation term is represented as a cluster to cluster annotation membership within the context of one cluster annotation term set. It is expected that a cluster in only associated with one term within a specific term set.

membership = abc_cache.get_metadata_dataframe(directory='WMB-taxonomy', file_name='cluster_to_cluster_annotation_membership')
membership.head(5)
cluster_annotation_term_label cluster_annotation_term_set_label cluster_alias cluster_annotation_term_name cluster_annotation_term_set_name number_of_cells color_hex_triplet
0 CS20230722_CLUS_0001 CCN20230722_CLUS 128 0001 CLA-EPd-CTX Car3 Glut_1 cluster 4262 #00664E
1 CS20230722_CLUS_0002 CCN20230722_CLUS 129 0002 CLA-EPd-CTX Car3 Glut_1 cluster 3222 #5C79CC
2 CS20230722_CLUS_0003 CCN20230722_CLUS 130 0003 CLA-EPd-CTX Car3 Glut_1 cluster 12216 #86FF4D
3 CS20230722_CLUS_0004 CCN20230722_CLUS 143 0004 CLA-EPd-CTX Car3 Glut_1 cluster 9334 #CC563D
4 CS20230722_CLUS_0005 CCN20230722_CLUS 131 0005 CLA-EPd-CTX Car3 Glut_2 cluster 1056 #E7FF26

Example use cases#

Aggregating cluster and cells counts per term#

We can obtain cluster and cell counts per cluster annotation term using the pandas groupby function.

# Count the number of clusters associated with each cluster annotation term
term_cluster_count = membership.groupby(['cluster_annotation_term_label'])[['cluster_alias']].count()
term_cluster_count.columns = ['number_of_clusters']
term_cluster_count.head(5)
number_of_clusters
cluster_annotation_term_label
CS20230722_CLAS_01 402
CS20230722_CLAS_02 83
CS20230722_CLAS_03 16
CS20230722_CLAS_04 16
CS20230722_CLAS_05 105
# Sum up the number of cells associated with each cluster annotation term
term_cell_count = membership.groupby(['cluster_annotation_term_label'])[['number_of_cells']].sum()
term_cell_count.columns = ['number_of_cells']
term_cell_count.head(5)
number_of_cells
cluster_annotation_term_label
CS20230722_CLAS_01 1095484
CS20230722_CLAS_02 310198
CS20230722_CLAS_03 4767
CS20230722_CLAS_04 84352
CS20230722_CLAS_05 107502
# Join counts with the term dataframe
term_by_label = term.set_index('label')
term_with_counts = term_by_label.join(term_cluster_count)
term_with_counts = term_with_counts.join(term_cell_count)
term_with_counts[['name', 'cluster_annotation_term_set_name', 'number_of_clusters', 'number_of_cells']].head(5)
name cluster_annotation_term_set_name number_of_clusters number_of_cells
label
CS20230722_NEUR_Glut Glut neurotransmitter 2561 2054137
CS20230722_NEUR_NA NA neurotransmitter 127 1089152
CS20230722_NEUR_GABA GABA neurotransmitter 1991 834601
CS20230722_NEUR_Dopa Dopa neurotransmitter 67 9396
CS20230722_NEUR_Glut-GABA Glut-GABA neurotransmitter 62 8989

The term_with_counts datafarme is available in the cache as cluster_annotation_term_with_counts.

Let’s visualize cluster and cells counts for of the classification levels using bar plots.

def bar_plot_by_level_and_type(df, level, fig_width = 8.5, fig_height = 4):
    
    fig, ax = plt.subplots(1, 2)
    fig.set_size_inches(fig_width, fig_height)
    
    for idx, ctype in enumerate(['clusters', 'cells']):

        pred = (df['cluster_annotation_term_set_name'] == level )
        names = df[pred]['name']
        counts = df[pred]['number_of_%s' % ctype]
        colors = df[pred]['color_hex_triplet']
        
        ax[idx].barh(names, counts, color=colors)
        ax[idx].set_title('Number of %s by %s' % (ctype,level)),
        ax[idx].set_xscale('log')
        
        if idx > 0 :
            ax[idx].set_yticklabels([])

    plt.show()

Neurotransmitter cluster and cell counts#

The majority of clusters and cells are of glutamatergic, GABAergic or GABA-glycinergic neurotransmitter types.

df = term_with_counts
level = 'neurotransmitter'
pred = (df['cluster_annotation_term_set_name'] == level )
bar_plot_by_level_and_type(term_with_counts, 'neurotransmitter')
../_images/298d3912d824511b6430c87bac335c29b8b5cb2cf9fc851e0d88f0362424f9b0.png

Class level cluster and cell counts#

Class “18 MB Glut” contains the largest number of clusters (>600), while class “01 IT-ET Glut” contains the largest number of cells (>1.0 million).

bar_plot_by_level_and_type(term_with_counts, 'class', 8.5, 6)
../_images/72bed8d0a10a89682a0ddebe4112327aca480b9faede3e8961a18b4de186d913.png

Visualizing cluster and term distributions#

We can explore the relationship and distribution of clusters between term sets by creating a pivot table using pandas groupby fuunction. Each row of the resulting dataframe represents a cluster, each column represents a term set and the value in the table is the name of the term that has been associated with the cluster for that specific term set.

pivot = membership.groupby(['cluster_alias', 'cluster_annotation_term_set_name'])['cluster_annotation_term_name'].first().unstack()
pivot = pivot[term_set['name']] # order columns
pivot
cluster_annotation_term_set_name neurotransmitter class subclass supertype cluster
cluster_alias
1 Glut 01 IT-ET Glut 018 L2 IT PPP-APr Glut 0082 L2 IT PPP-APr Glut_3 0326 L2 IT PPP-APr Glut_3
2 Glut 01 IT-ET Glut 018 L2 IT PPP-APr Glut 0082 L2 IT PPP-APr Glut_3 0327 L2 IT PPP-APr Glut_3
3 Glut 01 IT-ET Glut 018 L2 IT PPP-APr Glut 0081 L2 IT PPP-APr Glut_2 0322 L2 IT PPP-APr Glut_2
4 Glut 01 IT-ET Glut 018 L2 IT PPP-APr Glut 0081 L2 IT PPP-APr Glut_2 0323 L2 IT PPP-APr Glut_2
5 Glut 01 IT-ET Glut 018 L2 IT PPP-APr Glut 0081 L2 IT PPP-APr Glut_2 0325 L2 IT PPP-APr Glut_2
... ... ... ... ... ...
34368 GABA-Glyc 27 MY GABA 288 MDRN Hoxb5 Ebf2 Gly-Gaba 1102 MDRN Hoxb5 Ebf2 Gly-Gaba_1 4955 MDRN Hoxb5 Ebf2 Gly-Gaba_1
34372 GABA-Glyc 27 MY GABA 285 MY Lhx1 Gly-Gaba 1091 MY Lhx1 Gly-Gaba_3 4901 MY Lhx1 Gly-Gaba_3
34374 GABA-Glyc 27 MY GABA 285 MY Lhx1 Gly-Gaba 1091 MY Lhx1 Gly-Gaba_3 4902 MY Lhx1 Gly-Gaba_3
34376 GABA-Glyc 27 MY GABA 285 MY Lhx1 Gly-Gaba 1091 MY Lhx1 Gly-Gaba_3 4903 MY Lhx1 Gly-Gaba_3
34380 GABA-Glyc 27 MY GABA 285 MY Lhx1 Gly-Gaba 1095 MY Lhx1 Gly-Gaba_7 4924 MY Lhx1 Gly-Gaba_7

5322 rows × 5 columns

We can also obtain a cluster annotation color pivot table in the same way.

color = membership.groupby(['cluster_alias','cluster_annotation_term_set_name'])['color_hex_triplet'].first().unstack().fillna('#f9f9f9')
color = color[term_set['name']] # order columns
color.columns = ['%s_color' % x for x in color.columns]
color
neurotransmitter_color class_color subclass_color supertype_color cluster_color
cluster_alias
1 #2B93DF #FA0087 #0F6632 #266DFF #64661F
2 #2B93DF #FA0087 #0F6632 #266DFF #CCA73D
3 #2B93DF #FA0087 #0F6632 #002BCC #99000D
4 #2B93DF #FA0087 #0F6632 #002BCC #5C8899
5 #2B93DF #FA0087 #0F6632 #002BCC #473D66
... ... ... ... ... ...
34368 #820e57 #0096C7 #660038 #5CCCA4 #500099
34372 #820e57 #0096C7 #f20985 #976df9 #0F6627
34374 #820e57 #0096C7 #f20985 #976df9 #2E4799
34376 #820e57 #0096C7 #f20985 #976df9 #15FF00
34380 #820e57 #0096C7 #f20985 #FF2B26 #459988

5322 rows × 5 columns

The pivot and color dataframes created above are stored in the cache as cluster_to_cluster_annotation_membership_pivoted and cluster_to_cluster_annotation_membership_color respectively.

For a given pair of term sets A and B, define a function distribution that creates a cluster count table where the rows are terms in term set A, columns are terms in term set B and the table values being the number of clusters that is shared between the terms.

def distribution(A, B) :
    
    AxB = pivot.groupby([A,B])[['cluster']].count()
    AxB.columns = ['number_of_clusters']
    AxB = AxB.unstack().fillna(0)

    B_names = [x[1] for x in list(AxB.columns)]
    pred = (term['cluster_annotation_term_set_name'] == B)
    term_by_name = term[pred].set_index('name')
    B_colors = term_by_name.loc[B_names, 'color_hex_triplet']
    
    return AxB, B_names, B_colors

Function stacked_bar_distribution takes the results of distribution as input to create distribution stacked bar plot.

def stacked_bar_distribution(AxB, B_names, B_colors, fig_width = 6, fig_height = 6):

    fig, ax = plt.subplots()
    fig.set_size_inches(fig_width, fig_height)

    bottom = np.zeros(len(AxB))

    for i, col in enumerate(AxB.columns):
        ax.barh(AxB.index, AxB[col], left=bottom, label=col[1], color=B_colors[i])
        bottom += np.array(AxB[col])

    ax.set_title('Distribution of %s in each %s' % (AxB.columns.names[1], AxB.index.name))
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

    plt.show()
    
    return fig, ax

Distribution of neurotransmitter clusters in each class#

At the next level of classification, around 50% of the classes are have a single neurotransmitter identity and remaining 50% are of mixed types.

AxB, B_names, B_colors = distribution('class', 'neurotransmitter')
fig, ax = stacked_bar_distribution(AxB, B_names, B_colors, 6, 6)
/tmp/ipykernel_16800/1772253940.py:9: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`
  ax.barh(AxB.index, AxB[col], left=bottom, label=col[1], color=B_colors[i])
../_images/58aa8f7fb71ab1aab277f8ec1d3da0b280c68e914d1fedf2586cb873e4ca748d.png

Visualizing the mouse whole brain taxonomy#

Term sets: class, subclass, supertype and cluster forms a four level mouse whole brain taxonomy. We can visualized the taxonomy as a sunburst diagram that shows the single inheritance hierarchy through a series of rings, that are sliced for each annotation term. Each ring corresponds to a level in the hierarchy. We have ordered the rings so that the class level is the outer most ring so that we can add in labels. Rings are sliced up and divided based on their hierarchical relationship to the parent slice. The angle of each slice is proportional to the number of clusters belonging to the term.

levels = ['class', 'subclass', 'supertype']
df = {}

for lvl in levels:
    pred = term_with_counts['cluster_annotation_term_set_name'] == lvl
    df[lvl] = term_with_counts[pred]
    df[lvl] = df[lvl].sort_values(['parent_term_label', 'label'])

fig, ax = plt.subplots()
fig.set_size_inches(10, 10)
size = 0.15

for i, lvl in enumerate(levels):
    
    if lvl == 'class':
        ax.pie(df[lvl]['number_of_clusters'],
               colors=df[lvl]['color_hex_triplet'],
               labels = df[lvl]['name'],
               rotatelabels=True,
               labeldistance=1.025,
               radius=1,
               wedgeprops=dict(width=size, edgecolor=None),
               startangle=0)
    else :
        ax.pie(df[lvl]['number_of_clusters'],
               colors=df[lvl]['color_hex_triplet'],
               radius=1-i*size,
               wedgeprops=dict(width=size, edgecolor=None),
               startangle=0)

plt.show()
../_images/665904734a135c68ee25b683fc84327c7231d34296fdb695abdebfda035851b7.png