Source code for allensdk.brain_observatory.static_gratings

# Allen Institute Software License - This software license is the 2-clause BSD
# license plus a third clause that prohibits redistribution for commercial
# purposes without further permission.
#
# Copyright 2017. Allen Institute. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Redistributions for commercial purposes are not permitted without the
# Allen Institute's written permission.
# For purposes of this license, commercial purposes is the incorporation of the
# Allen Institute's software into anything for which you will charge fees or
# other compensation. Contact terms@alleninstitute.org for commercial licensing
# opportunities.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
import scipy.stats as st
import numpy as np
import pandas as pd
from math import sqrt
import logging
from .stimulus_analysis import StimulusAnalysis
from .brain_observatory_exceptions import BrainObservatoryAnalysisException, MissingStimulusException
from . import observatory_plots as oplots
from . import circle_plots as cplots
import h5py
import matplotlib.pyplot as plt

[docs]class StaticGratings(StimulusAnalysis): """ Perform tuning analysis specific to static gratings stimulus. Parameters ---------- data_set: BrainObservatoryNwbDataSet object """ _log = logging.getLogger('allensdk.brain_observatory.static_gratings') def __init__(self, data_set, **kwargs): super(StaticGratings, self).__init__(data_set, **kwargs) self._sweeplength = StaticGratings._PRELOAD self._interlength = StaticGratings._PRELOAD self._extralength = StaticGratings._PRELOAD self._orivals = StaticGratings._PRELOAD self._sfvals = StaticGratings._PRELOAD self._phasevals = StaticGratings._PRELOAD self._number_ori = StaticGratings._PRELOAD self._number_sf = StaticGratings._PRELOAD self._number_phase = StaticGratings._PRELOAD @property def sweeplength(self): if self._sweeplength is StaticGratings._PRELOAD: self.populate_stimulus_table() return self._sweeplength @property def interlength(self): if self._interlength is StaticGratings._PRELOAD: self.populate_stimulus_table() return self._interlength @property def extralength(self): if self._extralength is StaticGratings._PRELOAD: self.populate_stimulus_table() return self._extralength @property def orivals(self): if self._orivals is StaticGratings._PRELOAD: self.populate_stimulus_table() return self._orivals @property def sfvals(self): if self._sfvals is StaticGratings._PRELOAD: self.populate_stimulus_table() return self._sfvals @property def phasevals(self): if self._phasevals is StaticGratings._PRELOAD: self.populate_stimulus_table() return self._phasevals @property def number_ori(self): if self._number_ori is StaticGratings._PRELOAD: self.populate_stimulus_table() return self._number_ori @property def number_sf(self): if self._number_sf is StaticGratings._PRELOAD: self.populate_stimulus_table() return self._number_sf @property def number_phase(self): if self._number_phase is StaticGratings._PRELOAD: self.populate_stimulus_table() return self._number_phase
[docs] def populate_stimulus_table(self): stimulus_table = self.data_set.get_stimulus_table('static_gratings') self._stim_table = stimulus_table.fillna(value=0.) self._sweeplength = self.stim_table['end'].iloc[ 1] - self.stim_table['start'].iloc[1] self._interlength = 4 * self._sweeplength self._extralength = self._sweeplength self._orivals = np.unique(self._stim_table.orientation.dropna()) self._sfvals = np.unique(self._stim_table.spatial_frequency.dropna()) self._phasevals = np.unique(self._stim_table.phase.dropna()) self._number_ori = len(self._orivals) self._number_sf = len(self._sfvals) self._number_phase = len(self._phasevals)
[docs] def get_response(self): ''' Computes the mean response for each cell to each stimulus condition. Return is a (# orientations, # spatial frequencies, # phasees, # cells, 3) np.ndarray. The final dimension contains the mean response to the condition (index 0), standard error of the mean of the response to the condition (index 1), and the number of trials with a significant response (p < 0.05) to that condition (index 2). Returns ------- Numpy array storing mean responses. ''' StaticGratings._log.info("Calculating mean responses") response = np.empty((self.number_ori, self.number_sf, self.number_phase, self.numbercells + 1, 3)) def ptest(x): return len(np.where(x < (0.05 / (self.number_ori * (self.number_sf - 1))))[0]) for ori in self.orivals: ori_pt = np.where(self.orivals == ori)[0][0] for sf in self.sfvals: sf_pt = np.where(self.sfvals == sf)[0][0] for phase in self.phasevals: phase_pt = np.where(self.phasevals == phase)[0][0] subset_response = self.mean_sweep_response[(self.stim_table.spatial_frequency == sf) & ( self.stim_table.orientation == ori) & (self.stim_table.phase == phase)] subset_pval = self.pval[(self.stim_table.spatial_frequency == sf) & ( self.stim_table.orientation == ori) & (self.stim_table.phase == phase)] response[ori_pt, sf_pt, phase_pt, :, 0] = subset_response.mean(axis=0) response[ori_pt, sf_pt, phase_pt, :, 1] = subset_response.std( axis=0) / sqrt(len(subset_response)) response[ori_pt, sf_pt, phase_pt, :, 2] = subset_pval.apply(ptest, axis=0) return response
[docs] def get_peak(self): ''' Computes metrics related to each cell's peak response condition. Returns ------- Panda data frame with the following fields (_sg suffix is for static grating): * ori_sg (orientation) * sf_sg (spatial frequency) * phase_sg * response_variability_sg * osi_sg (orientation selectivity index) * peak_dff_sg (peak dF/F) * ptest_sg * time_to_peak_sg ''' StaticGratings._log.info('Calculating peak response properties') peak = pd.DataFrame(index=range(self.numbercells), columns=('ori_sg', 'sf_sg', 'phase_sg', 'reliability_sg', 'osi_sg', 'peak_dff_sg', 'ptest_sg', 'time_to_peak_sg', 'cell_specimen_id','p_run_sg', 'cv_os_sg', 'run_modulation_sg', 'sf_index_sg')) cids = self.data_set.get_cell_specimen_ids() orivals_rad = np.deg2rad(self.orivals) for nc in range(self.numbercells): cell_peak = np.where(self.response[:, 1:, :, nc, 0] == np.nanmax( self.response[:, 1:, :, nc, 0])) pref_ori = cell_peak[0][0] pref_sf = cell_peak[1][0] + 1 pref_phase = cell_peak[2][0] peak.cell_specimen_id.iloc[nc] = cids[nc] peak.ori_sg[nc] = pref_ori peak.sf_sg[nc] = pref_sf peak.phase_sg[nc] = pref_phase # peak.response_reliability_sg[nc] = self.response[ # pref_ori, pref_sf, pref_phase, nc, 2] / 0.48 # TODO: check number of trials pref = self.response[pref_ori, pref_sf, pref_phase, nc, 0] orth = self.response[ np.mod(pref_ori + 3, 6), pref_sf, pref_phase, nc, 0] tuning = self.response[:, pref_sf, pref_phase, nc, 0] tuning = np.where(tuning>0, tuning, 0) CV_top_os = np.empty((6), dtype=np.complex128) for i in range(6): CV_top_os[i] = (tuning[i]*np.exp(1j*2*orivals_rad[i])) peak.cv_os_sg.iloc[nc] = np.abs(CV_top_os.sum())/tuning.sum() peak.osi_sg[nc] = (pref - orth) / (pref + orth) peak.peak_dff_sg[nc] = pref groups = [] for ori in self.orivals: for sf in self.sfvals[1:]: for phase in self.phasevals: groups.append(self.mean_sweep_response[(self.stim_table.spatial_frequency == sf) & ( self.stim_table.orientation == ori) & (self.stim_table.phase == phase)][str(nc)]) groups.append(self.mean_sweep_response[ self.stim_table.spatial_frequency == 0][str(nc)]) _, p = st.f_oneway(*groups) peak.ptest_sg[nc] = p test_rows = (self.stim_table.orientation == self.orivals[pref_ori]) & \ (self.stim_table.spatial_frequency == self.sfvals[pref_sf]) & \ (self.stim_table.phase == self.phasevals[pref_phase]) if len(test_rows) < 2: msg = "Static grating p value requires at least 2 trials at the preferred " "orientation/spatial frequency/phase. Cell %d (%f, %f, %f) has %d." % \ (int(nc), self.orivals[pref_ori], self.sfvals[pref_sf], self.phasevals[pref_phase], len(test_rows)) raise BrainObservatoryAnalysisException(msg) test = self.sweep_response[test_rows][str(nc)].mean() peak.time_to_peak_sg[nc] = ( np.argmax(test) - self.interlength) / self.acquisition_rate #running modulation subset = self.mean_sweep_response[(self.stim_table.spatial_frequency==self.sfvals[pref_sf])&(self.stim_table.orientation==self.orivals[pref_ori])&(self.stim_table.phase==self.phasevals[pref_phase])] subset_run = subset[subset.dx>=1] subset_stat = subset[subset.dx<1] if (len(subset_run)>4) & (len(subset_stat)>4): (_,peak.p_run_sg.iloc[nc]) = st.ttest_ind(subset_run[str(nc)], subset_stat[str(nc)], equal_var=False) if subset_run[str(nc)].mean()>subset_stat[str(nc)].mean(): peak.run_modulation_sg.iloc[nc] = (subset_run[str(nc)].mean() - subset_stat[str(nc)].mean())/np.abs(subset_run[str(nc)].mean()) elif subset_run[str(nc)].mean()<subset_stat[str(nc)].mean(): peak.run_modulation_sg.iloc[nc] = -1*((subset_stat[str(nc)].mean() - subset_run[str(nc)].mean())/np.abs(subset_stat[str(nc)].mean())) else: peak.p_run_sg.iloc[nc] = np.NaN peak.run_modulation_sg.iloc[nc] = np.NaN #reliability subset = self.sweep_response[(self.stim_table.spatial_frequency==self.sfvals[pref_sf])&(self.stim_table.orientation==self.orivals[pref_ori])&(self.stim_table.phase==self.phasevals[pref_phase])] corr_matrix = np.empty((len(subset),len(subset))) for i in range(len(subset)): for j in range(len(subset)): r,p = st.pearsonr(subset[str(nc)].iloc[i][28:42], subset[str(nc)].iloc[j][28:42]) corr_matrix[i,j] = r mask = np.ones((len(subset), len(subset))) for i in range(len(subset)): for j in range(len(subset)): if i>=j: mask[i,j] = np.NaN corr_matrix *= mask peak.reliability_sg.iloc[nc] = np.nanmean(corr_matrix) #SF index sf_tuning = self.response[pref_ori,1:,pref_phase,nc,0] trials = self.mean_sweep_response[(self.stim_table.spatial_frequency!=0)&(self.stim_table.orientation==self.orivals[pref_ori])&(self.stim_table.phase==self.phasevals[pref_phase])][str(nc)].values SSE_part = np.sqrt(np.sum((trials-trials.mean())**2)/(len(trials)-5)) peak.sf_index_sg.iloc[nc] = (np.ptp(sf_tuning))/(np.ptp(sf_tuning) + 2*SSE_part) return peak
[docs] def plot_time_to_peak(self, p_value_max=oplots.P_VALUE_MAX, color_map=oplots.STIMULUS_COLOR_MAP): stimulus_table = self.data_set.get_stimulus_table('static_gratings') resps = [] for index, row in self.peak.iterrows(): pref_rows = (stimulus_table.orientation==self.orivals[row.ori_sg]) & \ (stimulus_table.spatial_frequency==self.sfvals[row.sf_sg]) & \ (stimulus_table.phase==self.phasevals[row.phase_sg]) mean_response = self.sweep_response[pref_rows][str(index)].mean() resps.append((mean_response - mean_response.mean() / mean_response.std())) mean_responses = np.array(resps) sorted_table = self.peak[self.peak.ptest_sg < p_value_max].sort_values('time_to_peak_sg') cell_order = sorted_table.index # time to peak is relative to stimulus start in seconds ttps = sorted_table.time_to_peak_sg.values + self.interlength / self.acquisition_rate msrs_sorted = mean_responses[cell_order,:] oplots.plot_time_to_peak(msrs_sorted, ttps, 0, (2*self.interlength + self.sweeplength) / self.acquisition_rate, (self.interlength) / self.acquisition_rate, (self.interlength + self.sweeplength) / self.acquisition_rate, color_map)
[docs] def plot_orientation_selectivity(self, si_range=oplots.SI_RANGE, n_hist_bins=oplots.N_HIST_BINS, color=oplots.STIM_COLOR, p_value_max=oplots.P_VALUE_MAX, peak_dff_min=oplots.PEAK_DFF_MIN): # responsive cells vis_cells = (self.peak.ptest_sg < p_value_max) & (self.peak.peak_dff_sg > peak_dff_min) # orientation selective cells osi_cells = vis_cells & (self.peak.osi_sg > si_range[0]) & (self.peak.osi_sg < si_range[1]) peak_osi = self.peak.ix[osi_cells] osis = peak_osi.osi_sg.values oplots.plot_selectivity_cumulative_histogram(osis, "orientation selectivity index", si_range=si_range, n_hist_bins=n_hist_bins, color=color)
[docs] def plot_preferred_orientation(self, include_labels=False, si_range=oplots.SI_RANGE, color=oplots.STIM_COLOR, p_value_max=oplots.P_VALUE_MAX, peak_dff_min=oplots.PEAK_DFF_MIN): vis_cells = (self.peak.ptest_sg < p_value_max) & (self.peak.peak_dff_sg > peak_dff_min) pref_oris = self.peak.ix[vis_cells].ori_sg.values pref_oris = [ self.orivals[pref_ori] for pref_ori in pref_oris ] angles, counts = np.unique(pref_oris, return_counts=True) oplots.plot_radial_histogram(angles, counts, include_labels=include_labels, all_angles=self.orivals, direction=-1, offset=180.0, color=color) if len(counts) == 0: max_count = 1 else: max_count = max(counts) center_x = 0.0 center_y = 0.5 * max_count # dimensions to get plot to fit h = 1.6 * max_count w = 2.4 * max_count plt.gca().set(xlim=(center_x - w*0.5, center_x + w*0.5), ylim = (center_y - h*0.5, center_y + h*0.5), aspect=1.0)
[docs] def plot_preferred_spatial_frequency(self, si_range=oplots.SI_RANGE, color=oplots.STIM_COLOR, p_value_max=oplots.P_VALUE_MAX, peak_dff_min=oplots.PEAK_DFF_MIN): vis_cells = (self.peak.ptest_sg < p_value_max) & (self.peak.peak_dff_sg > peak_dff_min) pref_sfs = self.peak.ix[vis_cells].sf_sg.values oplots.plot_condition_histogram(pref_sfs, self.sfvals[1:], color=color) plt.xlabel("spatial frequency (cycles/deg)") plt.ylabel("number of cells")
[docs] def open_fan_plot(self, cell_specimen_id=None, include_labels=False, cell_index=None): cell_index = self.row_from_cell_id(cell_specimen_id, cell_index) df = self.mean_sweep_response[str(cell_index)] st = self.data_set.get_stimulus_table('static_gratings') mask = st.dropna(subset=['orientation']).index data = df.values cmin = self.response[0,0,0,cell_index,0] cmax = data.mean() + data.std()*3 fp = cplots.FanPlotter.for_static_gratings() fp.plot(r_data=st.spatial_frequency.ix[mask].values, angle_data=st.orientation.ix[mask].values, group_data=st.phase.ix[mask].values, data=df.ix[mask].values, clim=[cmin, cmax]) fp.show_axes(closed=False) if include_labels: fp.show_r_labels() fp.show_angle_labels()
[docs] def reshape_response_array(self): ''' :return: response array in cells x stim conditions x repetition for noise correlations this is a re-organization of the mean sweep response table ''' mean_sweep_response = self.mean_sweep_response.values[:, :self.numbercells] stim_table = self.stim_table sfvals = self.sfvals sfvals = sfvals[sfvals != 0] # blank sweep response_new = np.zeros((self.numbercells, self.number_ori, self.number_sf-1, self.number_phase), dtype='object') for i, ori in enumerate(self.orivals): for j, sf in enumerate(sfvals): for k, phase in enumerate(self.phasevals): ind = (stim_table.orientation.values == ori) * (stim_table.spatial_frequency.values == sf) * (stim_table.phase.values == phase) for c in range(self.numbercells): response_new[c, i, j, k] = mean_sweep_response[ind, c] ind = (stim_table.spatial_frequency.values == 0) response_blank = mean_sweep_response[ind, :].T return response_new, response_blank
[docs] def get_signal_correlation(self, corr='spearman'): logging.debug("Calculating signal correlation") response = self.response[:, 1:, :, :self.numbercells, 0] # orientation x freq x phase x cell, no blank response = response.reshape(self.number_ori * (self.number_sf-1) * self.number_phase, self.numbercells).T N, Nstim = response.shape signal_corr = np.zeros((N, N)) signal_p = np.empty((N, N)) if corr == 'pearson': for i in range(N): for j in range(i, N): # matrix is symmetric signal_corr[i, j], signal_p[i, j] = st.pearsonr(response[i], response[j]) elif corr == 'spearman': for i in range(N): for j in range(i, N): # matrix is symmetric signal_corr[i, j], signal_p[i, j] = st.spearmanr(response[i], response[j]) else: raise Exception('correlation should be pearson or spearman') signal_corr = np.triu(signal_corr) + np.triu(signal_corr, 1).T # fill in lower triangle signal_p = np.triu(signal_p) + np.triu(signal_p, 1).T # fill in lower triangle return signal_corr, signal_p
[docs] def get_representational_similarity(self, corr='spearman'): logging.debug("Calculating representational similarity") response = self.response[:, 1:, :, :self.numbercells, 0] # orientation x freq x phase x cell response = response.reshape(self.number_ori * (self.number_sf-1) * self.number_phase, self.numbercells) Nstim, N = response.shape rep_sim = np.zeros((Nstim, Nstim)) rep_sim_p = np.empty((Nstim, Nstim)) if corr == 'pearson': for i in range(Nstim): for j in range(i, Nstim): # matrix is symmetric rep_sim[i, j], rep_sim_p[i, j] = st.pearsonr(response[i], response[j]) elif corr == 'spearman': for i in range(Nstim): for j in range(i, Nstim): # matrix is symmetric rep_sim[i, j], rep_sim_p[i, j] = st.spearmanr(response[i], response[j]) else: raise Exception('correlation should be pearson or spearman') rep_sim = np.triu(rep_sim) + np.triu(rep_sim, 1).T # fill in lower triangle rep_sim_p = np.triu(rep_sim_p) + np.triu(rep_sim_p, 1).T # fill in lower triangle return rep_sim, rep_sim_p
[docs] def get_noise_correlation(self, corr='spearman'): logging.debug("Calculating noise correlation") response, response_blank = self.reshape_response_array() noise_corr = np.zeros((self.numbercells, self.numbercells, self.number_ori, self.number_sf-1, self.number_phase)) noise_corr_p = np.zeros((self.numbercells, self.numbercells, self.number_ori, self.number_sf-1, self.number_phase)) noise_corr_blank = np.zeros((self.numbercells, self.numbercells)) noise_corr_blank_p = np.zeros((self.numbercells, self.numbercells)) if corr == 'pearson': for k in range(self.number_ori): for l in range(self.number_sf-1): for m in range(self.number_phase): for i in range(self.numbercells): for j in range(i, self.numbercells): noise_corr[i, j, k, l, m], noise_corr_p[i, j, k, l, m] = st.pearsonr(response[i, k, l, m], response[j, k, l, m]) noise_corr[:, :, k, l, m] = np.triu(noise_corr[:, :, k, l, m]) + np.triu(noise_corr[:, :, k, l, m], 1).T for i in range(self.numbercells): for j in range(i, self.numbercells): noise_corr_blank[i, j], noise_corr_blank_p[i, j] = st.pearsonr(response_blank[i], response_blank[j]) elif corr == 'spearman': for k in range(self.number_ori): for l in range(self.number_sf-1): for m in range(self.number_phase): for i in range(self.numbercells): for j in range(i, self.numbercells): noise_corr[i, j, k, l, m], noise_corr_p[i, j, k, l, m] = st.spearmanr(response[i, k, l, m], response[j, k, l, m]) noise_corr[:, :, k, l, m] = np.triu(noise_corr[:, :, k, l, m]) + np.triu(noise_corr[:, :, k, l, m], 1).T for i in range(self.numbercells): for j in range(i, self.numbercells): noise_corr_blank[i, j], noise_corr_blank_p[i, j] = st.spearmanr(response_blank[i], response_blank[j]) else: raise Exception('correlation should be pearson or spearman') noise_corr_blank[:, :] = np.triu(noise_corr_blank[:, :]) + np.triu(noise_corr_blank[:, :], 1).T return noise_corr, noise_corr_p, noise_corr_blank, noise_corr_blank_p
[docs] @staticmethod def from_analysis_file(data_set, analysis_file): sg = StaticGratings(data_set) try: sg.populate_stimulus_table() sg._sweep_response = pd.read_hdf(analysis_file, "analysis/sweep_response_sg") sg._mean_sweep_response = pd.read_hdf(analysis_file, "analysis/mean_sweep_response_sg") sg._peak = pd.read_hdf(analysis_file, "analysis/peak") with h5py.File(analysis_file, "r") as f: sg._response = f["analysis/response_sg"].value sg._binned_dx_sp = f["analysis/binned_dx_sp"].value sg._binned_cells_sp = f["analysis/binned_cells_sp"].value sg._binned_dx_vis = f["analysis/binned_dx_vis"].value sg._binned_cells_vis = f["analysis/binned_cells_vis"].value if "analysis/noise_corr_sg" in f: sg.noise_correlation = f["analysis/noise_corr_sg"].value if "analysis/signal_corr_sg" in f: sg.signal_correlation = f["analysis/signal_corr_sg"].value if "analysis/rep_similarity_sg" in f: sg.representational_similarity = f["analysis/rep_similarity_sg"].value except Exception as e: raise MissingStimulusException(e.args) return sg