import os
from six import string_types
import numpy as np
from bmtk.utils import sonata
from bmtk.utils.sonata.config import SonataConfig
from bmtk.utils.reports.compartment import CompartmentReport
from bmtk.utils.reports.compartment import plotting
from bmtk.simulator.utils import simulation_reports
def _get_report(report_path=None, config=None, report_name=None):
if report_path is not None:
return report_path, CompartmentReport.load(report=report_path)
elif config is not None:
selected_reports = []
sim_reports = simulation_reports.from_config(config)
for report in sim_reports:
if report.module in ['membrane_report', 'multimeter_report']:
rname = report.report_name
rfile = report.params['file_name']
# TODO: Full path should be determined by config/simulation_reports module
rpath = rfile if os.path.isabs(rfile) else os.path.join(report.params['tmp_dir'], rfile)
if report_name is not None and report_name == rname:
selected_reports.append((rname, CompartmentReport.load(rpath)))
elif report_name is None:
selected_reports.append((rname, CompartmentReport.load(rpath)))
if len(selected_reports) == 0:
msg = 'Could not find a report '
msg += '' if report_name is None else 'with report_name "{}"'.format(report_name)
msg += ' from configuration file. . Use "report_path" parameter instead.'
raise ValueError(msg)
elif len(selected_reports) > 1:
avail_reports = ', '.join(s[0] for s in selected_reports)
raise ValueError('Configuration file contained multiple "membrane_reports", use "report_name" or'
'"report_path" to pick which one to plot. Option values: {}'.format(avail_reports))
else:
return selected_reports[0]
else:
raise AttributeError('Could not find a compartment report SONATA file. Please user "config_file" or '
'"report_path" options.')
def _find_nodes(population, config=None, nodes_file=None, node_types_file=None):
if nodes_file is not None:
network = sonata.File(data_files=nodes_file, data_type_files=node_types_file)
if population not in network.nodes.population_names:
raise ValueError('node population "{}" not found in {}'.format(population, nodes_file))
return network.nodes[population]
elif config is not None:
for nodes_grp in config.nodes:
network = sonata.File(data_files=nodes_grp['nodes_file'], data_type_files=nodes_grp['node_types_file'])
if population in network.nodes.population_names:
return network.nodes[population]
raise ValueError('Could not find nodes file with node population "{}".'.format(population))
[docs]
def plot_traces(config_file=None, report_name=None, population=None, report_path=None, group_by=None,
group_excludes=None, nodes_file=None, node_types_file=None,
node_ids=None, sections='origin', average=False, times=None, title=None,
show_legend=None, show=True, save_as=None, plt_style=None):
"""Plot compartment variables (eg Membrane Voltage, Calcium conc.) traces from the output of simulation. Will
attempt to look in the SONATA simulation configuration json "reports" sections for any matching "membrane_report"
outputs with a matching report_name::
plot_traces(config_file='config.json', report_name='membrane_potential')
If the path the the report is different (or missing) than what's in the SONATA config then use the "report_path"
option instead::
plot_traces(report_path='/my/path/to/membrane_potential.h5')
To display the traces of only a select number of nodes you can filter using the node_ids options::
plot_traces(config_file='config.json', node_ids=[10, 20, 30, 40, 50])
The average option will find the mean value of all the traces to display::
plot_traces(config_file='config.json', node_ids=range(50, 100), average=True)
You may also group together different subsets of nodes and display multiple averages based on certain attributes
of the network, which can be done using the group_by key. The group_exlcudes option will exclude certain groups.
For example if you want to plot the averaged membrane potential across each cortical "layer", exclude L1::
plot_traces(config_file='config.json', report='membrane_potential', group_by='layer', group_excludes='L1')
:param config_file: path to SONATA simulation configuration.
:param report_name: name of the membrane_report "report" which will be plotted. If only one compartment report
in the simulation config then function will find it automatically.
:param population: string. If the report more than one population of nodes, use this to determine which nodes to
plot. If only one population exists and population=None then the function will find it by default.
:param report_path: Path to SONATA compartment report file. Do not use with "config_file" and "report_name" options.
:param group_by: Attribute of the "nodes" file used to group and average subsets of nodes.
:param group_excludes: list of strings or None. When using the "group_by", allows users to exclude certain groupings
based on the attribute value.
:param nodes_file: path to nodes hdf5 file containing "population". By default this will be resolved using the
config.
:param node_types_file: path to node-types csv file containing "population". By default this will be resolved using
the config.
:param node_ids: int or list of integers. Individual node to display the variable.
:param sections: 'origin', 'all', or list of ids, Compartments/elements to display, By default will only show values
at the soma.
:param average: If true will display average of "node_ids". Default: False
:param times: (float, float), start and stop times of simulation. By default will get values from simulation
configs "run" section.
:param title: str, adds a title to the plot. If None (default) then name will be automatically generated using the
report_name.
:param show_legend: Set True or False to determine if legend should be displayed on the plot. The default (None)
function itself will guess if legend should be shown.
:param show: bool to display or not display plot. default True.
:param save_as: None or str: file-name/path to save the plot as a png/jpeg/etc. If None or empty string will not
save plot.
:return: matplotlib figure.Figure object
"""
sonata_config = SonataConfig.from_json(config_file) if config_file else None
report_name, cr = _get_report(report_path=report_path, config=sonata_config, report_name=report_name)
if population is None:
pops = cr.populations
if len(pops) > 1:
raise ValueError('Report {} contains more than population of nodes ({}). Use population parameter'.format(
report_name, pops
))
population = pops[0]
if title is None:
title = '{} ({})'.format(report_name, population)
# Create node-groups
if group_by is not None:
node_groups = []
nodes = _find_nodes(population=population, config=sonata_config, nodes_file=nodes_file,
node_types_file=node_types_file)
grouped_df = None
for grp in nodes.groups:
if group_by in grp.all_columns:
grp_df = grp.to_dataframe()
grp_df = grp_df[['node_id', group_by]]
grouped_df = grp_df if grouped_df is None else grouped_df.append(grp_df, ignore_index=True)
if grouped_df is None:
raise ValueError('Could not find any nodes with group_by attribute "{}"'.format(group_by))
# Convert from string to list so we can always use the isin() method for filtering
if isinstance(group_excludes, string_types):
group_excludes = [group_excludes]
elif group_excludes is None:
group_excludes = []
for grp_key, grp in grouped_df.groupby(group_by):
if grp_key in group_excludes:
continue
node_groups.append({'node_ids': np.array(grp['node_id']), 'label': grp_key})
if len(node_groups) == 0:
exclude_str = ' excluding values {}'.format(', '.join(group_excludes)) if len(group_excludes) > 0 else ''
raise ValueError('Could not find any node-groups using group_by="{}"{}.'.format(group_by, exclude_str))
else:
node_groups = None
return plotting.plot_traces(
report=cr,
population=population,
node_ids=node_ids,
sections=sections,
average=average,
node_groups=node_groups,
times=times,
title=title,
show_legend=show_legend,
show=show,
save_as=save_as,
plt_style=plt_style
)