Source code for bmtk.simulator.pointnet.modules.spikes_inputs
# Copyright 2023. Allen Institute. All rights reserved
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
# following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
# disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import os
from bmtk.simulator.pointnet.gids import GidPool
from bmtk.simulator.pointnet.modules.sim_module import SimulatorMod
from bmtk.simulator.pointnet.io_tools import io
from bmtk.utils.reports.spike_trains import SpikeTrains
from bmtk.simulator.pointnet.pyfunction_cache import py_modules
import nest
[docs]
class SpikesInputsMod(SimulatorMod):
def __init__(self, name, input_type, module, **kwargs):
self._name = name
self._input_type = input_type
self._module = module
self._params = kwargs
self._spike_trains = None
self._run_counter = 0
self._warned = False
[docs]
def initialize(self, sim):
io.log_info('Build virtual cell stimulations for {}'.format(self._name))
# if input_file is a list, then we'll load each file in the list
if isinstance(self._params['input_file'], list):
# if run_counter is greater than the length of the input_file list, then
# raise an error
if self._run_counter >= len(self._params['input_file']):
# raise Exception('Number of input_files is less than number of runs')
# just warn instead of raising an exception
if not self._warned:
io.log_warning('Number of input_files is less than number of runs')
self._warned = True
return
input_path = self._params['input_file'][self._run_counter]
t_offset = nest.GetKernelStatus('biological_time')
# reset the virtual spike map to redifine the spikes
sim.net._virtual_ids_map = {}
sim.net._virtual_gids = GidPool()
else:
input_path = self._params['input_file']
t_offset = 0.0
self._run_counter += 1
node_set = sim.net.get_node_set(self._params['node_set'])
if self._module == 'function':
if 'spikes_function' not in self._params:
io.log_exception('missing parameter "spikes_function" for input {self._name}, module {self._module}')
spikes_generator = self._params['spikes_function']
if spikes_generator not in py_modules.spikes_generators:
io.log_exception(f'Could not find @spikes_generator function "{spikes_generator}" required for {self._name} inputs.')
spikes_func = py_modules.spikes_generator(name=spikes_generator)
self._spike_trains = SpikeTrains(cache_to_disk=False)
for node in node_set.fetch_nodes():
timestamps = spikes_func(node, sim)
self._spike_trains.add_spikes(
node_ids=node.node_id,
timestamps=timestamps,
population=node.population_name
)
else:
self._spike_trains = SpikeTrains.load(
# path=self._params['input_file'],
path=input_path,
file_type=self._module,
**self._params
)
sim.net.add_spike_trains(self._spike_trains, node_set, sim.get_spike_generator_params(), t_offset=t_offset)